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Abstract. Unpaired image-to-image translation aims to translate im-
ages from the source class to target one by providing sufficient data for
these classes. Current few-shot translation methods use multiple refer-
ence images to describe the target domain through extracting common
features. In this paper, we focus on a more specific identity transfer prob-
lem and advocate that particular property in each individual image can
also benefit generation. We accordingly propose a new multi-reference
identity transfer framework by simultaneously making use of particular-
ity and commonality of reference. It is achieved via a semantic pyramid
alignment module to make proper use of geometric information for indi-
vidual images, as well as an attention module to aggregate for the final
transformation. Extensive experiments demonstrate the effectiveness of
our framework given the promising results in a number of identity trans-
fer applications.

1 Introduction

Reference images are usually used as a supplement in image translation and
image editing tasks [7, 11, 25, 57]. They provide guidance of content (e.g., poses,
expression) [7, 57], style (such as texture) [11] or category information (e.g.,
identities, expression labels) [3, 25] for the final results. In this paper, we focus
on identity transfer tasks, including clothes and face identity transfer.

In certain tasks, multiple reference images as guidance are also available.
Image translation frameworks of [25, 51] utilize these multiple inputs, usually
unseen classes for generation, proved to be effective to achieve promising results.
We term them as few-shot-based methods. There is still an enormous room to
explore the appropriate way to use multiple references.

Few-Shot vs. Multi-Reference Multiple reference images contain variation
in many dimensions while keeping one common attribute. For example, in face
identity transfer, reference images vary from poses and expression while main-
taining the same identity. Few-shot-based methods [25, 51], contrarily, diminish
variation in the unconcerned attributes and only focus on commonality.
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This paper forms a new point of view that particularity inside each refer-
ence also provides useful clues for generation. Intuitively, in the task of identity
transfer, if the reference image shares the similar poses/expression as the input
content image, then the desired output can copy a lot of patches from the ref-
erence. In [12, 36, 46], the outputs are generated by warping from one reference
image in image space. However, these methods are mostly applicable for images
with similar poses (e.g. frontal faces), when the pose of a reference image differs
greatly from the content image, the warping technique in these methods is very
likely to fail. To obtain more robust results, we consider using multiple reference
images, as more references can provide complementary for generation. For ex-
ample, in Fig. 4(b), the 3rd reference image provides a frontal face, and the 2nd
reference provides a contemptuous mouth for the final output.

With this new motivation, we propose an intriguing way of using multiple
reference images and name it multi-reference method. In this method, we ob-
tain particularity from individual reference with an alignment module, and we
adaptively assign weights with an attention module to references for fusion as
commonality. The effectiveness of this new line of approach can be well proved
on the unpaired identity transfer task.

Semantic Alignment To make full use of particularity inside each reference,
we carefully design the alignment module for individual references. There ex-
ist prior image translation tasks involving alignment, which estimate pixel-wise
correspondence in image space [12, 44, 46]. It is widely known that pixel-level
alignment among images in different domains may result in unwanted distortion
given domains of, for instance, cartoon and real faces. In this case, we believe
semantic-level alignment is more important than the pixel-level one, which takes
context information into consideration for deeper image understanding.

We thus introduce a semantic pyramid to represent different levels of image
features, and a new module named semantic pyramid alignment to align images
hierarchically. The module starts from the highest semantic level and progres-
sively refine estimated correspondence in lower levels. Unlike previous multi-level
feature matching [1, 23] that mainly searches sparse or dense correspondence in
a feature extraction network (e.g., pre-trained VGG), we instead accomplish re-
sults by semantic alignment in an end-to-end fashion. Our alignment module
empirically outperforms several single-level alignment baselines.

Our contribution is as follows. 1) We propose a multi-reference framework,
which takes advantage of priors in each individual reference image, and adap-
tively fuses and generates result images. 2) We propose a semantic pyramid
alignment module, which aligns references semantically in multiple levels. 3) We
design an attention module to adaptively assign weights for reference fusion,
along with an effective category classification and comparison discriminator to
enforce image generation in a specific domain. 4) We achieve promising results
on several unpaired identity transfer tasks with only a few reference images.
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2 Related Work

Unpaired Image Translation Unpaired Image Translation is a task to trans-
late source domain images to target domain ones without ground-truth. Methods
of [18, 50, 57] use cycle consistency loss for image reconstruction, which greatly
improves performance without paired data. To translate multiple target domains
in one trained network, methods of [7, 33, 46] introduce class conditions as extra
input for translation. In another stream, some works [6, 24, 26, 30, 40, 45] address
this task with the assumption that images in source and target domains share
the same latent space. Moreover, methods of [17, 21, 47] disentangle the latent
space into style, structure, and content partition, so that the generator can fuse
features from different spaces.

To better utilize the feature from input images, some approaches [8, 12, 37, 46,
52] propose to warp features [8, 37] or pixels [12, 46] from inputs to the translated
results. Different from them, our alignment is accomplished on semantic pyramid
for higher robustness and it is done on multiple references simultaneously. Similar
to our approach, which fuses priors from multiple references, a view synthesis
network [56] is also proposed to synthesize a novel view of a scene or an object,
while we focus more on translation among different identities.

Recently, research [4, 25, 42, 51] also involves few-shot unpaired image trans-
lation, which is more challenging since only one or several target/source domain
images are provided for training or inference. Different from the most related
work [25], our framework takes both the geometric priors from each reference
and global context of all references into consideration, and thus achieves decent
results. The method of [42] also tackles temporal alignment and video frame
fusion, while we consider more on semantic alignment among different domains
and adaptively fuse the clues from references.

Face Image Generation To generate faces with different poses or expressions,
research works [2, 10, 12, 16, 36, 44, 46] have been proposed to synthesize face or
head images by warping a single or multiple reference images. The work of [2,
12] warp images with face landmark features, while in [10, 36, 44, 46], the input
images are warped with learned warping field. But there is a chance to produce
distortion or visual artifacts when head rotation, large motion or occlusion exists.

Alternatively, deep convolutional networks were considered [3, 9, 22, 31, 33,
34, 41, 48, 51, 54, 55]. In [9, 33, 34, 41, 48, 51, 54], faces are generated with the guid-
ance of segmentation map, facial landmark, boundary map, or pose/expression
parameters. Bao et al. [3] disentangle identity and facial attribute for face syn-
thesis. Natsume et al. [31] swap faces between two identities, while Zakharov et
al. [51] synthesize talking heads by adopting few-shot adversarial learning strat-
egy. They do not take full advantage of the geometric clues from multiple input
faces. As for the work of Sungjoo et al. [14], they also consider multiple reference
images for final generation. They apply adaptive weights for under-aligned fea-
ture blending and average the independently aligned feature, while we combine
the two steps of aligning different references and adaptive aggregation without
the help of extra landmark input.
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Fig. 1. The overall architecture of our multi-reference framework, where {SPAi} de-
notes the semantic pyramid alignment module, {Wi} indicates the attention module
for fusion. l refers to the feature level. All reference images are aligned with the con-
tent image in multi-level feature space, and references are adaptively fused with the
attention module for the decoder to generate the final result.

3 Our Method

Our method is to translate an image from the source class to the target one
under the condition that the target class is unseen in the training set and is only
specified by one or a few reference images. Specifically, given one content image
s from the source class S and k reference images {ti}i=1,2,...,k from the target
class T, we generate output y in the target class T while preserving the content
of pose, expressions, and shape from s.

To this end, we propose a multi-reference framework (Fig. 1), which makes
appropriate use of the clues from references to generate the final result. In the
generation stage, we firstly align each reference and the content image by ap-
plying the semantic pyramid alignment module, and then adaptively fuse all
reference features with an attention sub-network. Finally, we decode the fused
features to obtain the output hierarchically [35]. In the discrimination stage,
both category classification and comparison are adopted in discriminator estab-
lishment.

3.1 Multi-Reference Guided Generator

To utilize multiple reference images, current few-shot image generation frame-
works [25, 51] extract a spatially invariant embedding vector for each reference.
The vectors are averaged as global context for decoding. Although these methods
extract commonality from references, particularity in each individual reference
is discarded, which however also provides vitally important clues for generation.

To address this issue, we consider particularity by aligning each individual
reference with the content image for generation, without sacrificing commonal-
ity due to the important weighted fusion. To adaptively obtain global context
while retaining clues from each reference, the most important two modules for
alignment and fusion are as follows.
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Fig. 2. Median-level structure in semantic pyramid alignment module.

In the alignment module, for each reference, we align it with the content
image semantically. Rather than directly aligning on image space, we start from
the high-level feature space to learn a coarse semantic correspondence, which is
then propagated to lower feature space for refinement. It not only enables the
semantic context aligned in high-level feature space, but also preserves textures
from references in low-level one. In the fusion stage, we estimate the weight map
for reference by attention module in each feature space. Noted that we do not
map the image into a 1D embedding vector and instead produce a 2D feature
map to preserve the spatial structure of each reference.

Semantic Pyramid Alignment As mentioned above, we align the reference
and content images in multi-level deep feature space, which is referred to as
semantic pyramid. The pipeline is described in Alg. 1, where l refers to differ-
ent levels, and l = 1, 2, 3 indicates high-, median- and low-level feature space.
Besides, i indexes reference images with number k in total.

Starting from the highest level, we estimate feature correspondence between
current and each reference to obtain the coarsest optical flow map, which is then
fed into the lower level for refinement. For subsequent median and low levels, we
update the coarse optical flow by estimating a residual.

The procedure is to first up-sample the optical flow map {ml−1
ti } from the high

level. It is used to warp the current reference feature f l
ti to w(f l

ti) that is coarsely
aligned with content f l

s. We then estimate the dense correspondence between
w(f l

ti) and f l
s in a finer level with the alignment network N l. The network

output is a residual for the upsampled flow map from the last level. We sum

them up to get the final flow map f̂ l
ti. The structure of median-level alignment

module is shown in Fig. 2. With optical flow maps estimated on multiple levels,
the reference image feature is warped for our deployment.

Feature Fusion with Attention By aligning features from all reference im-
ages, we select useful regions for generation. Since output image preserves pose,
expressions, and shape from the content image, we thus search similar patches
with the content image from all references.
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Algorithm 1: Semantic Pyramid Alignment

Input: Alignment network N l, content image feature f l
s, reference image

feature f l
ti, where l = 1, 2, 3 and i = 1, 2, ..., k.

Output: Flow maps {ml
ti}, warped features {f̂ l

ti}.
for l = 1; l ≤ 3; l = l + 1 do

if l == 1 then
for i = 1; i ≤ k; i = i + 1 do

ml
ti = N l(f l

s, f
l
ti);

end

else
for i = 1; i ≤ k; i = i + 1 do

U(ml−1
ti ) = Upsample(ml−1

ti )× 2.0 ;

w(f l
ti) = warp(f l

ti, U(ml−1
ti )) ;

ml
ti = N l(f l

s, w(f l
ti)) + U(ml−1

ti );

end

end

f̂ l
ti = warp(f l

ti,m
l
ti) ;

end

return {ml
ti}, {f̂ l

ti};

For each level in feature space, as shown in Fig. 3, we firstly flatten and

transpose the content feature f l
s and all reference ones f̂ l

t into an appropriate
shape, then we calculate their similarity at each pixel location by batch matrix
multiplication. This operation results in attention weights for each reference, and
then they are normalized with softmax on the dimension of reference number.

Finally, we apply the normalized weights on reference features f̂ l
t and obtain the

output ol by another matrix multiplication for fusion. ol is fed to decoder for final
generation. Noted that it is related but different from self-attention blocks [43,
53, 49]. In self-attention blocks, the similarity matrix is computed among features
of pixels, while we compute the similarity among features of different references.

3.2 Discriminators

To distinguish the generation of the translated images from the real ones, we
employ two discriminators, i.e. category classification discriminator Dcl and cat-
egory comparison discriminator Dco.

Category Classification Following the discriminator in [25], we build a multi-
task adversarial discriminator to distinguish between the generated and real
images with multiple categories. For |S| categories in the training set, the dis-
criminator Dcl produces |S| output, and we treat each as binary classification.

The adversarial loss is applied to specific class output. When updating Dcl

for a real image of source class s, we penalize Dcl if its sth output is negative.
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Fig. 3. The procedure of feature fusion in attention mechanism, where n, b, c, h and
w refer to batch size, reference number, channel, height, and width respectively.

For fake images of class s, we penalize Dcl if its sth output is positive. As for
generator, we only penalize generator if the sth output of Dcl is negative.

Category Comparison Only category classification discriminator is not enough
to enforce generation of unseen categories, since the classification discriminator is
trained only with the known categories in the training set. When an image from
an unseen category is required to be generated, the generator needs a similar
category in the training dataset. Therefore, in the case that there is no simi-
lar category, we need an auxiliary network to strengthen the relation between
reference inputs and output.

To this end, we design another discriminator Dco for comparing the category
between two images. We treat two images as a positive sample if they belong
to the same category. Otherwise, they are negative. Besides, the generated and
real images in the same category are viewed as another negative sample. The
discriminator helps preserve the identity in unseen classes.

3.3 Training

Random Warping for Reference Images Directly training of our proposed
framework can be easily trapped into generating one of the most similar reference
images. To avoid this trivial solution, which copies one of the reference images,
we randomly produce the warping parameters and apply them to distort the
reference images as a perturbation.

Loss Functions We adopt two adversarial losses Lcl
GAN and Lco

GAN for two
kinds of discriminators of Dcl and Dco. Dcl is a |S| binary discriminator, and
Dco is a conditional binary discriminator. The two loss functions are

Lcl
GAN (G,Dcl) = Es[−logDcl(s)] + Es,{t1,...,tk}[log(1−Dcl(y))],

Lco
GAN (G,Dco) = Eti,tj [−logDco(ti, tj)] + Es,{t1,...,tk}[log(1−Dcl(G(ti,y)))],

Where s, {ti} and y indicate source class image, target image set, and translated
image respectively.



8 R. Wu et al.

We also adopt reconstruction loss by sampling content and reference images
in the same category. In this case, the output image is the same as the content
one. It is expressed as

LREC(G) = Es,{s1,...,sk}‖s−G(s, {s1, ..., sk})‖1, (1)

where {s1, ..., sk} indicates a set of k random samples from category S.

4 Experiments

4.1 Datasets and Implementation

Datasets To verify the effectiveness of our framework, we conduct experiments
on two kinds of datasets of faces and human body. Face/clothes identity transfer
tasks are accomplished. For face identity transfer, we conduct experiments on
RaFD [20], Multi-PIE [13] and CelebA [29], while we utilize DeepFashion [28]
for clothes identity transfer.

Both RaFD and Multi-PIE contain face images with a clean background.
RaFD contains 67 identities, and we use the first session of Multi-PIE with 249
identities. CelebA is a more challenging dataset with complicated background,
which contains 10,177 identities, while different images of the same person may
vary widely. As for Deepfashion dataset, we utilize its group of ‘Blouses Shirts’,
and we split them into 1,438 styles for training and 189 for test.
Implementation We implement our method with PyTorch [32] on a TITAN
Xp card. We train our framework with resolution 128× 128, and set batch size
as 6. Adam [19] optimizer with learning rate 1e−4 is adopted for both generator
and discriminators. We train our framework with 3 reference images (3-shot).
Any number of references can be fed into our framework for testing. At the stage
of inference, the class/identity of reference images is unseen in training.

4.2 Quantitative Evaluation Metrics

We set up quantitative evaluation metrics as follows.
Classification Accuracy (Acc) Similar to that of [7, 25], we train a classifier
for testset. We adopt a pre-trained Inception-v3 [39] as backbone and replace
the fully connected layer with a new one that produce specific class number for
corresponding dataset. We evaluate classification accuracy of generated images.
Distribution Discrepancy (mFID) To obtain distribution discrepancy, we
firstly extract features with a deep face feature extractor VGGFace2 [5] for face
dataset and VGG16 [38] for DeepFashion dataset, then we use FID [15] to mea-
sure feature distribution discrepancy between real and generated faces for each
category and obtain the average as mFID.
Inception Score (IS) We utilize the fine-tuned Inception-v3 [39] in ‘Classi-
fication Accuracy’ to calculate the inception score between real and generated
images, which measures the realism of generated images.
Perceptual Distance (Per) We also measure if our results preserve the content
by calculating the L2 distance between the content image and output in feature
space produced by the ‘conv 5’ layer in pre-trained VGG16 on ImageNet.
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Fig. 4. Visualization of (a) pyramid alignment and (b) attention maps for fusion.

4.3 Analysis of Different Components

Visualization of Pyramid Alignment Module In our proposed framework,
hierarchical features from the encoder are aligned by estimating correspondence
between content and reference images. The dense correspondence on multiple
levels is visualized in Fig. 4(a). We notice that optical flow (dense correspon-
dence) is gradually refined from high to low levels.

Visualization of Attention Map for Fusion The attention weight on each
level for selection and fusion is visualized in Fig. 4(b). The attention module
produces different weights on regions – regions that are similar between the
reference and the content images gain large attention weights. For example, in
the high level space, most face regions of ‘Ref3’ receive great weight as they
share similar pose with the content image; the mouth of ‘Ref2’ is also important
with the same reason.

Besides, from high to low levels, attention weights dilute for each reference
image, since features are gradually aligned and constructed by our alignment
module and decoder layers.

Semantic Pyramid vs. Single Level In the alignment and attention module,
we utilize multiple level features in a hierarchical mechanism. To verify the effec-
tiveness, we compare with simplified versions with only one level. The versions
include the highest level feature (i.e. the last layer of encoder) for alignment
and fusion and the lowest level where alignment and fusion are directly done
on RGB image space. The results shown in Fig. 5 indicate that the output is
easily trapped due to model collapse with only the highest level feature, while
distortion emerges when processing on RGB image level.
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Content Ref Single H Single R Multi

Fig. 5. Results of multi-level and simplified single-level frameworks, where ‘Single H’
and ‘Single R’ means that alignment is conducted on only the highest feature and RGB-
image levels respectively. ‘Multi’ indicates our complete semantic pyramid alignment.

Effectiveness of Discriminators We utilize two discriminators for category
classification and comparison. To study the roles of each discriminator, we con-
duct ablation study on discriminators. The quantitative results are shown in
Table 1, where ‘w/o Dco’, ‘w/o Dcl’ and ‘Full’ indicate the proposed frame-
work without category classification discriminator, framework without category
comparison discriminator and our full system.

In Table 1, we observe that without the category classification module, trans-
lation accuracy drops significantly while the inception score gets better. It means
that category comparison is beneficial for higher-quality image generation, while
category classification helps specific category image generation. Note that the
translation accuracy and mean FID reach the best values when we utilize both.

Reference Quality and Reference Number Since we make use of clues
from references for generation, the quality of references makes difference for final
generation. We conduct experiments on RaFD dataset, and sample images with
different poses and expressions as reference images. Results in Fig. 6 show that
FUNIT [25] differs little even with the change of references, while our proposed

Table 1. Quantitative comparison among different discriminators on RaFD dataset.

Acc(%) ↑ IS ↑ mFID(1e3) ↓ Per ↓
w/o Dco 68.84 2.41 7.70 1.41
w/o Dcl 16.77 5.80 12.13 0.94

Full 73.03 2.49 6.08 1.39
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Content Ref1 Ref2 FUNIT Ours

Fig. 6. Effect of reference quality for final generation. The highlight regions show the
main effect with different references. In the first case, similar eyebrow between ‘Ref2’
and content leads to better eyebrow in translation (2nd row). In the second example,
smile expression in ‘Ref2’ helps the generation of smiling face (4th row).

framework generates better results with more suitable reference images. The
more similar poses content and reference images are, the higher-quality images
we translate. This attributes to the fact that similar poses provide realistic clues
for final generation.

We then evaluate our framework with different reference numbers. In the
experiments, we randomly select reference images to specific number. They are
fed into a trained framework. In Table 2, the inception score (IS) and perceptual
distance (Per) are comparable, while scores of classification accuracy (Acc) and
mFID improve greatly with reference number increasing, indicating that more
references help achieve more accurate translation.

Table 2. Quantitative comparison regarding reference numbers.

Ref Acc(%) ↑ IS ↑ mFID(1e3) ↓ Per ↓ Runtime(ms) ↓
1 53.12 3.31 9.55 1.56 51.1
3 73.03 2.49 6.08 1.39 53.0
5 90.01 1.46 4.50 1.47 59.8
10 90.21 1.47 4.39 1.44 71.5
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Content Ref1 Ref2 FUNIT Star-F Star-U FOMM Tow Ours

Fig. 7. Visual comparison on different face datasets. The results are generated with 3
references, while only 2 references are shown here.

4.4 More Results

Identity Transfer on Faces For face identity transfer, we conduct experi-
ments on RaFD [20], Multi-PIE [13] and CelebA [29]. We compare with ap-
proaches of FUNIT [25], state-of-the-art few-shot unpaired image translation
framework; Tow [3], the method to synthesize faces with identity and attributes
from two faces respectively, and FOMM [37], the latest motion transfer method.
We also compare with StarGAN [7], state-of-the-art multi-class unpaired image
translation method. Since StarGAN is a full-shot framework, we follow the ‘fair’
(‘Star-F’) and ‘unfair’ (‘Star-U’) setting of [25].
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Content Ref1 Ref2 FUNIT[25] PATN[58] Liquid[27] Ours

Fig. 8. Visual comparison on clothes identity transfer. We resize PATN results from
256× 176 to 128× 128, which make them slightly misaligned with the input.

As for Star-F, we firstly train StarGAN with seen categories in the training
dataset. During testing, we estimate class association vectors [25] for input ref-
erence images. Then the estimated vectors are used as the target condition for
inference. For the ‘unfair’ setting of StarGAN (‘Star-U’), we train the framework
with images of unseen categories in the test set. We adopt 3-shot training in our
experiments, i.e., 3 reference images are provided in training.

Visual Comparison We show the visual comparison in Fig. 7. As for the results
on RaFD and Multi-PIE dataset, Star-F produces results with correct pose and
expression. Yet the identity is incorrect. Contrarily, Star-U achieves results with
correct identities; but the output is blurry with more visual artifacts. They are
mainly caused by a lack of sufficient training data with only 3 reference samples
provided. FOMM generates satisified results when reference and content image
share similar poses, while it generates distorted results in the cases that large
geometric transform is required. As for Tow, center faces are translated to an-
other identity but the results are kind of blurry. FUNIT generates decent output
with fewer artifacts, and the identity is similar to one person in the training
set, while it fails to generate images with the satisfying categories specified by
the reference images. Since our method makes appropriate use of the clues from
each reference, our results preserve identities from references best. Besides, the
alignment module in semantic pyramid greatly improves the generation quality.

For CelebA dataset, reference images vary much though they belong to the
same identity, and thus it would be difficult to define target identity with only
these few references. As a result, Star-F and Star-U cannot generate decent
output since there are too many identities but few samples provided for each in
the training set. As for FUNIT, it can generate decent output, while our method
can produce more promising results with few varied references.
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Table 3. Quantitative comparison on RaFD and DeepFashion respectively.

Application Methods Acc(%) ↑ IS ↑ mFID ↓ Per ↓

F
a
ce

s

FUNIT [25] 38.31 1.83 12.40 1.62
Star-F [7] 16.91 1.82 15.56 1.41

Star-UN [7] 31.71 1.41 15.34 1.66
FOMM [37] 33.94 1.39 9.73 1.76

Ours 73.03 2.49 6.08 1.39

C
lo

th
es

FUNIT [25] 0.69 10.74 25.96 0.14
LiquidGAN [27] 36.9 2.04 35.19 1.70

PATN [58] 12.29 2.19 32.24 0.16
Ours 29.97 13.38 25.45 0.12

Quantitative Comparison We also make comparison quantitatively in Table 3.
Our method achieves both the highest classification accuracy and IS score among
all compared methods on face dataset. It indicates that our method consistently
guarantees correct category and ensures high-quality results. Besides, we achieve
the lowest mFID score and perceptual distance with content images, showing
that our results also preserve the content well from the input.

Identity Transfer on Clothes For the application of clothes translation on
human body, we utilize DeepFashion dataset for method comparison. We evalu-
ate different frameworks regarding the group of ‘Blouses Shirts’. Different styles
of clothes are regarded as the categories in our framework.

We compare our method with LiquidGAN [27] and PATN [58], which are
used for pose translation. Their pre-trained models on DeepFashion dataset are
adopted for test. We also compare with FUNIT here. The results are shown
in Fig. 8. Both LiquidGAN and our method translate the input images to the
correct categories of clothes, while our generated images are more natural.

The quantitative comparison is listed in Table 3. Since LiquidGAN [27] and
PATN [58] are single reference frameworks, we generate results with all 3 testing
references and average their evaluation metrics scores. Noted that we can achieve
the best scores on both IS and mFID, which indicates the high quality of our
results. Besides, we also preserve poses from content images well with the short-
est perceptual distance, while LiquidGAN and our method achieve comparable
classification accuracy.

5 Conclusion

In this paper, we propose a multi-reference framework for unpaired identity
transfer, which makes decent use of clues from each individual reference. A well-
designed semantic pyramid alignment module is introduced to extract particu-
larity from each reference. References are also adaptively fused as commonality
for generation with the attention module. We conduct extensive experiments
and achieve promising results on some unpaired identity transfer applications.
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